Volume 5, Issue 6, December 2017, Page: 80-87
Mechanism of Interaction Between Cefonicid Sodium and Trypsin by Spectroscopic and Molecular Docking Methods
Jinju Wang, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding, P. R. China
Baosheng Liu, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding, P. R. China
Shaotong Duan, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding, P. R. China
Tongtong Li, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding, P. R. China
Received: Jan. 10, 2017;       Accepted: Jan. 31, 2017;       Published: Jan. 12, 2018
DOI: 10.11648/j.ajop.20170506.14      View  2946      Downloads  73
Abstract
The binding of cefonicid sodium (CFS) with trypsin was investigated by spectroscopic and molecular docking methods under different temperatures conditions (303, 310 and 318 K). The results demonstrated that the interaction between CFS and trypsin was taking place via static quenching with 1:1 binding ratio. The fluorescence datas were treated by using the double logarithmic equation, and the binding constants Ka of the interaction of CFS-trypsin systems and the number of binding sites n were obtained. The thermodynamic parameters of CFS-trypsin systems under different temperatures were obtained by the thermodynamic equation. The experimental data show that the interactions between them were mainly hydrophobic interaction and hydrogen bonding interaction, and with the molecular docking results are consistent.
Keywords
Cefonicid Sodium, Trypsin, Spectrometry, Interaction, Molecular Docking
To cite this article
Jinju Wang, Baosheng Liu, Shaotong Duan, Tongtong Li, Mechanism of Interaction Between Cefonicid Sodium and Trypsin by Spectroscopic and Molecular Docking Methods, American Journal of Optics and Photonics. Vol. 5, No. 6, 2017, pp. 80-87. doi: 10.11648/j.ajop.20170506.14
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
X. N. Yan, B. S. Liu, B. H. Chong, S. N. Cao, J. Lumin. 2013, 142,162.
[2]
L. Gombos, J. Kardos, A. Patthy, P. Medveczky, L. Szilagyi, A. Malnasi-Csizmadia, L. Graf, Biochem. 2008, 47, 1684.
[3]
S. Ghosh, Colloid. Surface. B 2008, 66, 186.
[4]
R. M. Stroud, L. M. Kay, R. E. Dickerson, J. Mol. Biol. 1974, 83, 192.
[5]
H. Li, J. Pu, Y. Wang, C. Liu, J. Yu, T. Li, R. Q. Wang, Spectrochim. Acta A 2013, 115, 11.
[6]
Y. Q. Wang, C. Y. Tan, S. L. Zhuang, P. Z. Zhai, Y. Cui, Q. H. Zhou, H. M. Zhang, Z. H. Fei, J. Hazard. Mater. 2014, 278, 65.
[7]
X. X. Hu, Z. H. Yu, R. T. Liu, Spectrochim. Acta A 2013, 108, 54.
[8]
X. R. Li, P. H. Li, Lumin. 2016, 31, 792.
[9]
M. Nidhin, D. Ghosh, H. Yadav, N. Yadav, S. Majumder, Materi. Sci. Engin. B 2015, 202, 53.
[10]
W. He, H. Dou, L. Zhang, L. Wang, R. Wang, J. Chang, Spectrochim. Acta Part A 2014,118, 519.
[11]
G. Elmas, Y. Esra, J. Fluoresc. 2014, 24, 1445.
[12]
J. Q. Liu, J. N. Tian, Y. Li, X. J. Yao, Z. D. Hu, X. G. Chen, Macromol. Biosci. 2005, 4, 520.
[13]
S. H. D. P. Lacerda, J. J. Park, C. Meuse, D. Pristinski, M. L. Becker, A. Karim, J. F. Douglas, Acs Nano 2009, 4, 379.
[14]
C. N. Pace, F. Vajdos, L. Fee, Fee, G. Grimsley, T. Gray, Prot. Sci. 1995, 11, 2423.
[15]
Z. X. Chi, R. T. Liu, H. Zhang, Biomacromolecules 2010, 9, 2459.
[16]
R. Yang, L. L. Yu, H. J. Zeng, R. L. Liang, X. L. Chen, L. B. Qu, J. Fluoresc. 2012, 22, 1459.
[17]
Y. Teng, F. Ji, C. Li, Z. Yu, R. Liu, J. Lumin. 2011, 131, 2667.
[18]
G. Kaur, S. Tripathi, Spectrochim. Acta. Part A 2015, 134, 183.
[19]
Y. Q. Wang, H. M. Zhang, G. C. Zhang, S. X. Liu, Q. H. Zhou, Z. H. Fei, Int. J. Biol. Macromol. 2007, 41, 250.
[20]
Y. Hu, S. Xu, X. Zhu, A. Gong, Spectrochim. Acta A. 2009, 74, 531.
[21]
R. Ghosh, M. Mukherjee, K. Chattopadhyay, S. Ghosh, J. Phys. Chem. B 2012, 116, 12500.
[22]
M. Maciazek-Jurczyk, A. Sulkowska, B. Bojko, J. Rownicka, W. W. Sulkowska, J. Mol. Struct. 2009, 924-926, 384.
[23]
Y. J. Hu, Y. Liu, Z. B. Pi, S. S. Qu, Bioorg. Med. Chem. 2005, 13, 6609.
[24]
Y. Y. Hu, S. Q. Xu, X. S. Zhu, A. Q. Gong, Spectrochim. Acta Part A 2009, 74, 531.
[25]
K. Gurvir, S. K. Tripathi, Spectrochim. Acta Part A 2015, 134, 183.
[26]
Y. Y. Yue, X. G. Chen, J. Qin, X. J. Yao, Dyes Pigm. 2008, 79, 182.
[27]
P. D. Ross, S. Subramanian, Biochem. 1981, 20, 3096.
[28]
W. R. Wang, R. R. Zhu, R. Xiao, H. Liu, S. L. Wang, Biol. Trace. Elem. Res., 2011, 142, 446.
[29]
Y. Lu, G. K. Wang, X. M. Lu, J. Lv, M. H. Xu, W. W. Zhang, Spectrochim. Acta Part A 2010, 75, 266.
[30]
B. Bojko, A. Sulkowska, M. Maciazek-Jurczyk, J. Rownicka, W. W. Sukowski, J. Pharm. Biomed. Anal. 2010, 52, 384.
[31]
S. N. Khan, B. Islam, R. Yennamalli, A. Sultan, N. Subbarao, A. U. Khan, Eur. J. Pharm. Sci. 2008, 35, 382.
[32]
W. He, H. J. Dou, L. J. Wang, R. Y. Wang, J. B. Chang, Spectrochim. Acta A 2014, 118, 519.
[33]
J. Jin, X. Zhang, J. Lumin. 2008, 128, 86.
[34]
R. Zhang, T. Sun, C. G. Liu, W. Song, Z. Z. Cao, R. T. Liu, Biochem. Mol. Toxicol. 2015, 29, 425.
[35]
Y. Jia, H. Q. Yang, L. Q. Guo, Q. Wang, Q. Y. M. Huang, H. Li, Chemi. Resea. Applic. 2016, 28, 680.
Browse journals by subject